0, 20 h ( t ) = is relatively compact in e for any t r +, 30 when is uniform for any x ? h theoreme 3.7 h c fc'[ r +, e ] is relatively compact is and only if 10 the function in h is equicontinuous in [ a 川ed人qnv,q都有。丘口川三(三…三un)三…三u?。﹕(v”k1…1)、什i…);(門(mén))n(八wc人第三節(jié),作為預(yù)備知識(shí)首先討論了空間lcr,e中的錐與bclllch空間e中的錐的關(guān)系,然后給出了無(wú)窮區(qū)間上兩類抽象連續(xù)由數(shù)族相對(duì)緊的充要條件,并用它lfl考察了一階微分方程的終值問(wèn)題和fredholm型積分方程解的存在性內(nèi)有更多更詳細(xì)關(guān)于regular cone的造句" />
theoreme 3.4 let p be a regular cone in e and a : be an increasing operator such that then a has a maximal fixed point u * and a minimal fixed point it, in [ u0, u0 ] i moreover theoreme 3.5 h c lc [ r +, e ] is relatively compact if and only if 10 the function in h is equicontinuous in [ 0, 6 ] for any b > 0, 20 h ( t ) = is relatively compact in e for any t r +, 30 when is uniform for any x ? h theoreme 3.7 h c fc'[ r +, e ] is relatively compact is and only if 10 the function in h is equicontinuous in [ a 川ed人qnv,q都有。丘口川三(三…三un)三…三u?。﹕(v”k1…1)、什i…);(門(mén))n(八wc人第三節(jié),作為預(yù)備知識(shí)首先討論了空間lcr,e中的錐與bclllch空間e中的錐的關(guān)系,然后給出了無(wú)窮區(qū)間上兩類抽象連續(xù)由數(shù)族相對(duì)緊的充要條件,并用它lfl考察了一階微分方程的終值問(wèn)題和fredholm型積分方程解的存在性
It's difficult to find regular cone in a sentence. 用regular cone造句挺難的